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Background

• Branching process

State space Z+ = {0, 1, · · · }.

I Definition
A conservative Q-matrix Q = (qij ; i, j ∈ Z+) is called a branching
Q-matrix if it takes the following form:

qij ==

{
ibj−i+1, if i ≥ 1, j ≥ i− 1

0, otherwise,
(1.1)

where
bj ≥ 0 (j 6= 1), 0 < −b1 =

∑
j 6=1

bj <∞. (1.2)
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A Branching Markov process (simply, MBP) is a continuous-time
Markov chain taking values in Z+ whose transition function
P (t) = (pij(t); i, j ∈ Z+) satisfies the Kolmogorov equations

P ′(t) = P (t)Q, (1.3)

where Q is a branching Q-matrix.
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Let {X(t); t ≥ 0} denote the corresponding process and
P (t) = (pij(t); i, j ∈ Z+) denote its transition function.
Define

F (t, u) =

∞∑
j=0

p1j(t)u
j .

It is well known that

∞∑
k=0

pik(t)u
k = [F (t, u)]i.
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We assume throughout this talk that

b0 = 0, m =:

∞∑
j=1

jbj+1 <∞.

Therefore, Q is regular. It is also easy to see that

X(t)→∞ as t→∞.

By Athreya and Ney [3] or Harris [2] that W (t) = e−mtX(t) is an
integrable martingale and thus converges to a r.v. W w.p.1 as
t→∞. Hence, X(t+s)

X(t) converges to ems w.p.1 as t→∞ for any
fixed s ≥ 0.
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• Problems: What are the following convergence rates?

P (|X(t+ s)

X(t)
− ems| > ε), (1.4)

and

P (|W (t)−W | > ε), P (|X(t+ s)

X(t)
− ems| > ε|W ≥ α) (1.5)

for ε > 0 and α > 0.
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• Related conclusions:
(i) G-W process: Athreya, K.B. (1994, Annals of Applied
Probability, 4(3):779õ790)

(ii) G-W process with immigration: (1.4), Liu J.N. and Zhang M.
(2016, Acta Mathematica Sinica, English Series, 32(8):893-900).

(iii) G-W process with immigration: (1.5), Li L.Y. and Li J.P.
(2018, Submitted to JOTP).
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Preliminary

Define

B(u) =

∞∑
j=0

bju
j .

Denote

gk(t) = e−b1tp1k(t), k ≥ 1, Hj,k(t) = ejb1t
∫ t

0
gk(s)e

−jb1sds, j ≥ k.

Lemma 2.1.

For any k ≥ 1,

g′k(t) ≥ 0, H ′j,k(t) ≥ 0, j ≥ k.
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Lemma 2.2.

For any j ≥ 1,
lim
t→∞

e−b1tp1j(t) = ρj

exists and ρj ≤ ρ1 = 1 (j ≥ 1). Furthermore, Q(u) =
∑∞

j=1 ρju
j

is the unique solution of

B(u)Q′(u)− b1Q(u) = 0, 0 ≤ u < 1 (2.1)

subject to

Q(0) = 0, Q′(0) = 1, Q(u) <∞ (u ∈ (0, 1), Q(1) =∞. (2.2)

Idea of proof. Use Lemma 2.1 and Kolmogorov forward equation.
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Note that F (s, u) is strictly increasing with respect to u ≥ 0.
For any fixed s > 0, let g(s, ·) = F−1(s, ·) be the inverse of F (s, ·).
Denote

us = sup{u ≥ 0; F (s, u) <∞},

then us ≥ 1 and g(s, ·) is well defined on [0, F (s, us)) (or
[0, F (s, us)] if F (s, us) <∞) with value in [0, us) (or [0, us] if
F (s, us) <∞).
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Preliminary

Lemma 2.3.

(i) us+t ≤ us and F (s+ t, us+t) ≥ F (s, us) for any s, t > 0.
(ii) For any s, t ≥ 0, u ∈ [1, F (s, us)),

g(s+ t, u) ≤ g(s, u).

(iii) For any s, t ≥ 0, u ∈ [0, 1],

g(s+ t, u) ≥ g(s, u).

Furthermore,

g(s+ t, u) = g(t, g(s, u)) u ∈ [0, F (s, us)).
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Preliminary

Proposition 2.1.

If F (s0, u0) <∞ for some u0 > 1 and s0 > 0, then for
1 ≤ u ≤ F (s0, u0), g(t, u) ↓ 1 as t ↑ ∞ and

R(t, u) ≡ emt(g(t, u)− 1) ↓ R(u) as t ↑ ∞ (2.3)

where R(·) is the unique solution of the functional equation

R(F (s0, u)) = ems0R(u) for 1 ≤ u ≤ F (s0, u0) (2.4)

subject to

0 < R(u) <∞ for 1 < u ≤ F (s0, u0)

R(1) = 0, R′(1) = 1. (2.5)

Idea of proof. Use Lemma 2.3 and the properties of F (s, u).
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Conclusions

Theorem 3.1.

Suppose that B(θ0) <∞ for some θ0 > 1. Then for any ε > 0
and s > 0,

lim
t→∞

e−b1tP (|X(t+ s)

X(t)
− ems| > ε|X(0) = 1)

=

∞∑
k=1

φ(s, k, ε)ρk <∞ (3.1)

where φ(s, k, ε) = P (|Z̄k(s)− ems| > ε) and Z̄k(s) being the

mean
∑k
i=1 Zi(s)
k of k i.i.d. r.v. Zi(s) with same distribution as

X(s). {ρk} is given in Lemma 2.2.
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Sketch of proof. (i) By the condition, we can prove that for any
s > 0, there exists θ̃0 ∈ (1, θ0) s.t. F (s, θ̃0) <∞.
(ii) X(t+ s) can be expressed as

X(t+ s) =

X(t)∑
k=1

ξt,i(s) (3.2)

where {ξt,i(s); t ≥ 0; i ≥ 1} are i.i.d. processes with the same law
as X(s). Therefore,

P (|X(t+ s)

X(t)
− ems| > ε|X(0) = 1)

=

∞∑
k=1

P (X(t) = k|X(0) = 1)φ(s, k, ε).
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(iii) Estimate Since φ(s, k, ε).
For any fixed s > 0,

φ(s, k, ε)

≤ P (α
∑k
i=1 Zi(s) > αk(e

ms+ε)) + P (β
∑k
i=1 Zi(s) > βk(e

ms−ε))

≤ [F (s, α)α−(e
ms+ε)]k + [F (s, β)β−(e

ms−ε)]k

where α and β are any constants in (1, θ̃0) and (0, 1) respectively.
(iv) It can be verified that for any ε ∈ (0, 1) and s > 0, there exist
α0 ∈ (1, θ̃0) and β0 ∈ (0, 1) s.t.

0 < F (s, α0)α
−(ems+ε)
0 < 1 and 0 < F (s, β0)β

−(ems−ε)
0 < 1.

Therefore, there exists λ = λ(s, ε) ∈ (0, 1) s.t.

φ(s, k, ε) ≤ 2λk, ∀k ≥ 1.

By Lemma 2.2, we get the result. �
Li Junping
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Remark.

Suppose that for fixed s > 0 and ε > 0, there exist constants
Cε(s) and r > 0 such that mr > −b1 and φ(s, k, ε) ≤ Cε(s) · k−r
for all k ≥ 1. Then (3.1) holds.

Sketch of proof. (i) Note that

h(t, k) ≡ φ(s, k, ε)P (X(t) = k)

eb1t
≤ Cε(s)

kr
· P (X(t) = k)

eb1t
≡ h̃(t, k).

By Lemma 2.2,
lim
t→∞

h(t, k) = φ(s, k, ε)ρk

and
lim
t→∞

h̃(t, k) = Cε(s) ·
ρk
kr
.
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(ii) Estimate
∑∞

k=1 h̃(t, k).

∞∑
k=1

h̃(t, k) =
E[X−r(t)]

eb1t

=
1

Γ(r)

∫ ∞
0

F (t, e−v)

eb1t
vr−1dv

=
1

Γ(r)

∫ 1

0

F (t, u)

eb1t
k(u)du ↑

∫ 1

0
Q(u)k(u)du.

where k(u) = | log u|r−1

u . We have used F (t,u)

eb1t
↑ Q(u) as t ↑ ∞

which is due to Lemmas 2.1 and 2.2.
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(iii) Prove that
∫ 1
0 Q(u)k(u)du <∞.

Fixed 0 < u0 < 1, denote un = g(n, u0), it can be proved that∫ 1

u0

Q(u)k(u)du =

∞∑
n=1

∫ un

un−1

Q(u)k(u)du

and there exists λ ∈ (e−(mr+b1), 1) s.t. for n large enough,∫ un+1

un

Q(u)k(u)du ≤ λ
∫ un

un−1

Q(u)k(u)du

which implies the result. �
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In fact, we have

Corollary 3.1.

Suppose that E[X2+δ(1)] <∞ for some δ > 0. Then (3.1) holds.
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Regarding W (t), we first have

Proposition.

Suppose that B(u0) <∞ for some u0 > 1. Then there exists
θ1 > 0 such that

C1 = sup
t≥0

E[eθ1W (t)] <∞.
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Sketch of proof. By the condition, we have that F (s, u) <∞ for
some u > 1 and s > 0. For convenience, we may assume
K := F (1, u0) <∞ for some u0 > 1. Then for any t ≥ 0,
F (t+ 1, u) ≤ K if 0 ≤ u ≤ g(t, u0). Further,

E[eθW (t+1)] ≤ K if θ ≤ em(t+1) log g(t, u0).

Recall that g(t, u0) ↓ 1 as t ↑ ∞, by Proposition 2.1,

lim
t→∞

em(t+1) log g(t, u0) = emR(u0) > 0.

Therefore, we can choose θ1 > 0 such that

sup
t≥0

E[eθ1W (t)] ≤ K.

�
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Theorem 3.2.

Suppose that B(u0) <∞ for some u0 > 1. Then there exists C2

and λ > 0 such that

P (|W −W (t)| ≥ ε) ≤ C2e
−λε

2
3 e

mt
3 .

Li Junping



Background Preliminary Conclusions References Acknowledgements

Conclusions

Sketch of proof. (i) By Theorem 3.3, we have

φ(θ) = E[exp(θW )] <∞, ∀θ ≤ θ1.

Let {W (i); i ≥ 1} are i.i.d. copies of W , Sn =
∑n

i=1(W
(i) − 1).

We can prove that there exists θ2 > 0 s.t.

sup
|θ|≤θ2

E[exp(
θSn√
n

)] ≤ eC

where

C = sup
|u|≤1

|φ(u)e−u − 1

u2
| <∞.
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(ii) Note that

W −W (t) = lim
s→∞

(W (t+ s)−W (t))

= e−mt lim
s→∞

e−ms X(t)∑
j=1

ξt,j(s)−X(t)


= e−mt

X(t)∑
j=1

(W (j) − 1)

where ξt,j(s) is the population size at time s+ t of the jth particle
among the X(t) particles existing at time t and W (j) is the limit
r.v. in the line of descent initiated by jth parent at time t. By the
conditional independence,

P (W −W (t) > ε|σ(X(s); s ≤ t)) = ψ(X(t), emtε)

where ψ(k, r) = P (Sk ≥ r).
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(iii) By Markov’s inequality,

P (Sk ≥ r) ≤ E
(
e
θ2
Sk√
k

)
e
−θ2 r√

k ≤ C̄e−θ2
r√
k

Therefore,

P (W −W (t) ≥ ε) = Eψ(X(t), emtε) ≤ C̄E

(
e
−θ2εe

mt
2 1√

W (t)

)
.

By Proposition, for λ > 0,

E

[
e
− λ√

W (t)

]
= λ

∫ ∞
0

e−λxP (eθ1W (t) ≥ e
θ1
x2 )dx

≤ C1

∫ ∞
0

e−ye
− θ1λ

2

y2 dy.
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Thus,

P (W −W (t) ≥ ε) ≤ C̄C1

∫ ∞
0

e−ye
− θ1λ

2
t

y2 dy,

where λt = θ2εe
mt
2 . However, for λ > 0,∫ ∞

0
e−ye

−λ
2

y2 dy =

∫ λ2/3

0
e−ye

−λ
2

y2 dy +

∫ ∞
λ2/3

e−ye
−λ

2

y2 dy ≤ 2e−λ
2
3 .

Hence,

P (W −W (t) ≥ ε) ≤ 2C̄C1e
−(
√
θ1θ2εe

mt
2 )

2
3 = C2e

−λε
2
3 e

mt
3 ,

where λ = (
√
θ1θ2)

2
3 .

Similar arguments holds for P (W −W (t) ≤ −ε). �
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Theorem 3.3.

Suppose that B(u0) <∞ for some u0 > 1. Then there exists
constants C3 and λ > 0 such that for all ε > 0, α > 0, we can find
0 < I(ε) <∞ such that

P

(∣∣∣∣X(t+ s)

X(t)
− ems

∣∣∣∣ > ε|W ≥ α
)

≤ C3e
−αγI(ε)emt + C2e

−λ(α(1−γ))
2
3 e

mt
3

for 0 < γ < 1. Especially, for the case γ = 1
2 ,

P (|X(t+ s)

X(t)
− ems| > ε|W ≥ α) ≤ C4e

−λ(α
2
)
2
3 e

mt
3 .

Li Junping



Background Preliminary Conclusions References Acknowledgements

Conclusions

Sketch of proof. (i) Note that

P

(∣∣∣∣X(t+ s)

X(t)
− ems

∣∣∣∣ > ε|W ≥ α
)

= P

(∣∣∣∣X(t+ s)

X(s)
− ems

∣∣∣∣ > ε,W ≥ α
)

1

P (W ≥ α)

= pα

[
P

(∣∣∣∣X(t+ s)

X(t)
− ems

∣∣∣∣ > ε,W (t) ≤ αγ,W ≥ α
)]

+pα

[
P

(∣∣∣∣X(t+ s)

X(t)
− ems

∣∣∣∣ > ε,W (t) ≥ αγ,W ≥ α
)]

=: pα(α1,t + α2,t),

where 0 < γ < 1, pα = 1
P (W≥α) .
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(ii) Estimate α1,t and α2,t.

By Theorem 3.2,

α1,t ≤ P (W −W (t) ≥ α(1− γ)) ≤ C2e
−λ(α(1−γ))

2
3 e

mt
3 .

On the other hand, since E(eθ1X(s)) <∞, we can prove that there
exist C5 > 0 and I(ε) > 0, s.t.

α2,t ≤ P

(∣∣∣∣X(t+ s)

X(t)
− ems

∣∣∣∣ > ε,W (t) ≥ αγ
)

≤
∑

k≥αγemt
P (X(t) = k)P

(∣∣∣∣∣
∑k

i=1 ξt,i(s)

k
− ems

∣∣∣∣∣ > ε

)
≤ C5e

−αγI(ε)emt .
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Hence,

P

(∣∣∣∣X(t+ s)

X(t)
− ems

∣∣∣∣ > ε|W ≥ α
)

≤ pα

(
C2e

−λ(α(1−γ))
2
3 e

mt
3 + C5e

−αγI(ε)emt
)
.

If γ = 1/2, there exists C4 and λ > 0 such that

P

(∣∣∣∣X(t+ s)

X(t)
− ems

∣∣∣∣ > ε|W ≥ α
)
≤ C4e

−λ(α
2
)
2
3 e

mt
3 ,

Since the second term α2,t goes to 0 faster than α1,t. �
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